Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A<sc>bstract</sc> We propose a model that provides a simultaneous solution to the doublet-triplet splitting problem of grand unified theories, the electroweak hierarchy problem and the strong CP problem. The mechanism is based on the dynamics of two axion-like particles that would crunch the universe at the time of the QCD phase transition if triplets were light or had a VEV or if doublets were heavy or did not have a VEV. The only trace left at low energies are these two axion-like particles. They are weakly coupled to the Standard Model and could be detected at upcoming axion experiments or by a combination of neutron EDM measurements and the astrophysical detection of fuzzy dark matter.more » « lessFree, publicly-accessible full text available February 1, 2026
-
A<sc>bstract</sc> We investigate the dynamics responsible for generating the potential of theη′, the (would-be) Goldstone boson associated with the anomalous axial U(1) symmetry of QCD. The standard lore posits that pure QCD dynamics generates a confining potential with a branched structure as a function of theθangle, and that this same potential largely determines the properties of theη′once fermions are included. Here we test this picture by examining a supersymmetric extension of QCD with a small amount of supersymmetry breaking generated via anomaly mediation. For pure SU(N) QCD without flavors, we verify that there areNbranches generated by gaugino condensation. Once quarks are introduced, the flavor effects qualitatively change the strong dynamics of the pure theory. ForFflavors we find |N − F| branches, whose dynamical origin is gaugino condensation in the unbroken subgroup forF < N –1, and in the dual gauge group forF > N+ 1. For the special cases ofF=N –1,N,N+ 1 we find no branches and the entire potential is consistent with being a one-instanton effect. The number of branches is a simple consequence of the selection rules of an anomalous U(1)Rsymmetry. We find that theη′mass does not vanish in the largeNlimit for fixedF/N, since the anomaly is non-vanishing. The same dynamics that is responsible for theη′potential is also responsible for the axion potential. We present a simple derivation of the axion mass formula for an arbitrary number of flavors.more » « less
-
Abstract High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF’s physics potential.more » « less
An official website of the United States government
